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CHAPTER I. THE DISCRETE KALMAN FILTER 

Introduction 

An important class of problems in communications and 

control consists of finding an estimate of some quantity, 

given measurements which are composed of the unknown quantity 

plus additive noise. One of the first studies of this kind 

was by Gauss in 1809 when determining orbital parameters of 

a celestial body (1). In modern times one of the most sig

nificant results was obtained by Wiener (2) in 1949 who gave 

an integral equation solution to the problem of estimating 

random signals. However, this integral equation could be 

solved explicitly only for certain special cases. Until about 

1960 almost all contributions to the area were obtained es

sentially from Wiener's original work and subsequent exten

sions. By this time researchers had begun to realize the 

value of the modern digital computer and numerical solutions 

began to assume a more significant role than analytic solu

tions. 

One particular recursive procedure generally is con

sidered to have stimulated great interest in the area of esti

mation. This was suggested by Kalman (3) in 1960 who formu

lated the problem using the concepts of state and state 

transition in the representation of the random signals. In 

the state formulation for the discrete°=time case, linear 
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systems are specified by simultaneous first-order difference 

equations. The discrete-time case seems to be inherently 

suited for solution on a digital computer and accurately 

describes the common physical situation in which measure

ments are obtained at discrete instants of time (4). From a 

computational viewpoint one of the most significant aspects 

of the Kalman approach is that the estimates are obtained 

recursively as new measurements are made. For historical 

reasons, methods of obtaining estimates of unknown quantities 

generally are referred to as filters. 

The filter described by Kalman is a means of obtaining an 

estimate of the state of a linear, discrete-time system. The 

estimate is a linear combination of noise corrupted observa

tions taken at discrete instances of time of a linear func

tion of the state of the system at the Scime values of time. 

In the case of Gaussian noise sequences the linear esti

mate is optimal for a wide class of loss functions including 

the quadratic case. This important result is stated by 

Nahi (5) and is attributed to Doob by Meditch (6). Since the 

original paper there has been a number of extensions by 

various authors. Several of these that are of particular 

value are described in this chapter, together with a state

ment of the discrete-time filtering problem and the solution 

by Kalman. 

In 1968, Kalman's solution was extended by Brown and 
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Hartman (7) to include the case in which the measurement is 

a linear function of both the system state at the time of the 

measurement and of the state at the preceding instant of 

time. 

The Brown and Hartman filter while applicable for a more 

general measurement case does not provide estimates for as 

large a class of conditions or in as convenient a manner as 

desired. For example contributions to the field of convention

al Kalman filtering allow the effects of simultaneous measure

ments to be examined individually md permit the use of some 

suboptimal techniques designed to reduce computational ef

fort. It is the purpose of this dissertation to present for 

the more general measurement case algorithms that provide 

estimates for these and other conditions that have been found 

in practice to be of substantial significance. 

The Conventional Kalman Filter 

The discrete filtering problem solved by Kalman (3) 

is as follows: 

Problem 1; Consider the system 

process: x(n+l) = (|)(n)x(n) + B(n)u(n) (1.1) 

measurement: y(n) = M(n)x(n) + v(n) (1.2) 

where the state x is an n vector, the forcing function u is 
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an r vector, the measurement or observation y is an m vector, 

the measurement noise or error v is an m vector and n is the 

discrete time index. Also, (f> is the nxn state transition 

matrix, B is the nxr input matrix and M is the mxn measure

ment matrix. The stochastic process {u(n), n = 0,1,...} 

is a zero mean Gaussian sequence with covariance 

cov[u(n)]  =  E[u(n)u' (m)  3 =  Ofni^mn (1-3)  

where 6 is the Kronecker delta and the prime mark denotes 

matrix transpose. The process {v(n)} is a zero mean 

Gaussian sequence with covariance 

cov[v(n)] = R(n)6 (1.4) mn 

The two processes usually are considered to be uncorrelated 

so 

E[u(n)v'(m)] = 0 . (1.5) 

The initial state x(0) is a zero-mean Gaussian random vector 

with covariance 

cov[x(0)] = P(0) (1.6) 

The initial state is assumed to be uncorrelated with {u(n)} 

and {v(n)} so 

£. L" vu; u yiij j (1 .7)  
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E[x(0)v'(n)] = 0 . (1.8) 

Given P(0) and the set of measurements {y(1),y(2),...,y(n)} 

the problem is to find the optimal estimate of x(n), x(n|n), 

which minimizes the mean square filtering error. 

The filtering error is the difference between the actual 

state and the estimate so the function to be minimized is 

J = E{[x(n)-x(n|n)]'[x(n)-&(n|n)]} (1.9) 

It may seem that the Gaussian assumption for {u} and {v} 

is substantially restrictive, but this is not the case since 
I 

many physical processes are approximately Gaussian (8). In 

many cases when a large number of small independent random 

effects are superimposed the distribution of the sum of the 

effects is approximately Gaussian under certain general condi

tions. This is actually an approximate statement of the 

central limit theorem of probability theory. See, for example, 

Parzen (9) for a treatment of this concept. 

The solution to Problem 1 has been obtained in recursive 

form by Kalman (3) and is stated as follows: 

The solution to Problem 1 is the optimal estimate giVën 

by 
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&(n|n) = &(n|n-l) + K(n)[y(n)-M(n)2(n|n-1)] (1.10) 

&(n|n-l) = #(n-l)&(n-l|n-l) (1.11) 

K(n) = P(nln-1)M'(n) [M(n)P(nln-l) M'(n)+R(n;) ]"^ (1.12) 

P(n|n-1) = ^(n-l)P(n-ljn-l) (j>'(n-1) 

+ B(n-l)0(n-l)B'(n-l) (1.13) 

P{n|n) = P(n|n-l)-K(n)M(n)P(n|n-l) (1.14) 

with initial conditions 

a(0|0) = 0 (1.15) 

P(0|0) = P(0) (1.16) 

The nxn matrix P(n|n) is the covariance of the filtering error 

x(n)-x(n|n). The initial error covariance, P(0|0), is equal 

to the covariance of the initial state, P(0), since the 

initial estimate, x(0|0), is zero for the case of zero-mean 

initial state. 

The nxm matrix K(n) generally is called the gain matrix 

or simply the gain of the filter. 

The conditional notation (l|m) indicates the value of a 

quantity at time 1 given measurement data through time m. 

Thus x(n|n-l) is the optimal estimate of the state at time n 

given measurements of the state through time n-1. The co-

XT I 11—JL / .ka 
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P(nln-l) = cov[x{n)-x(nln-l) 1 (1.17) 

Calculation of the quantities x(n|n-l) and P(n|n-1) does not 

depend on the measurement at time n and is referred to common

ly as the time update at time n. The remainder of the quanti

ties in the algorithm constitutes the measurement update since 

it is a function of the measurement at time n. 

There are several good tutorial references available which 

develop the Kalman filter including Meditch (6) and Nahi (5). 

Sequential Measurement Processing 

In the conventional Kalman filter all m measurements 

available at a given time are processed simultaneously. As 

shown by Sorenson (4) it is possible to process the data 

sequentially if the measurement vector can be partitioned 

into components with uncorrelated measurement errors. In 

sequential processing each set of data is treated separately. 

This technique is summarized as follows: 

Suppose that at a given time n the m dimensional meas

urement vector can be partitioned into p components as 

y(n) = 

y^Cn) M^(n) vj(n) 

y2<n' = Mgfn) x(n) + vjdi) (1.18) 

yp(n) M*(n) Vp(n) 
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where 

E{v^ (n) Vj (n) } = B_(n)ô^j (1.19) 

Then the solution to Problem 1 is the estimate computed by 

using the Kalman algorithm to obtain x^(n|n) and P^(n|n) 

from y^(n) and the following algorithm p-1 times to process 

y2 (n).. .yp(n) 

Ki(n) = P^_j^(n|n)M[{n) [M^(n)P^_^(nin)M|(n) + R^fn)]"^ 

(1.20) 

P^(n|n) = P^_^(n|n) - K^(n)M^(n)P^_^(n|n) (1.21) 

&i(n|n) = x^_^(n|n) + K^(n)[y^(n)-M^(n)&^_i(n|n)] (1.22) 

where 

i = 2,3,...,p (1.23) 

The optimal estimate &(n|n) and covariance P(n|n) are 

(n|n) and Pp(n|n). 

Error Covariance for Suboptimal 
Gain 

The covariance calculation P(n|n) given by the Kalman 

algorithm is an optimal calculation in that the expression 

is valid only if the gain matrix is as given in the algorithm. 

In those cases in which some suboptimal technique is used to 

obtain a gain matrix, a general expression for covariance is 
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required. Such a result has been obtained by several authors 

including Meditch (6) and is stated as follows: 

Consider Problem 1. In the event that a suboptimal 

estimate is to be obtained by using an arbitrary gain matrix, 

the covariance of the resulting estimation error P(n|n) is 

given as. 

P(n|n) = [I-K(n)M(n) ]P(n| n-1) [I-K(n)M(n) 1 ' 

+ K(n)R(n)K'(n) (1.24) 

where I is the nxn identity matrix. 

Alternate Form of the Kalman 
Filter 

The optimal filter also may be implemented in a form in 

which the inverse of the estimation error covariance matrix 

is propagated. This technique is attributed by Kauninski et al. 

(10) to D. C. Fraser and is stated as follows: 

The optimal estimate for Problem 1 may be obtained from 

d(n|n), d(n|n-l), P ̂ (n|n) and P ^(n|n-l) using the definitions 

d(n|n) = P l(n|n)#(n|n) (1.25) 

d(n|n-l) = P ^(n|n-l)x(n|n-l) (1.26) 

and 
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d(n|n-l) = [I-L(n)B'(n-l) ] (() '^(n-l)d(n-l n-l) 

P"l(n|n-1) = [I-L(n)B'(n-l)]F(n) 

F(n) = (J) ^\n-l)P ^ (n-l|n-l) (}) ^(n-1) 

L(n) = F(n)B(n-l) [Q"^(n-1)+B'(n-l)F(n)B(n-l)] 

d(n|n) = d(n|n-l) + M' (n)R ^(n)y(n) 

P"^(n|n) = P"l(n|n-1) + M'(n)R"^(n)M(n) 

where 
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CHAPTER II. KALMAN FILTERS WITH DELAYED STATE 

MEASUREMENTS 

Doppler Counts as Measurements 

As mentioned previously Kalman's solution was extended 

to include the case in which the measurement at a given time 

is dependent on the state at that time as well as the previous 

discrete time. This particular form of measurement was noted 

by Brown and Hagerman (11) in 1968 with reference to frequency 

counts as measurements. One example of measurement data of 

this type is that from the Navy Navigation Satellite System 

or TRANSIT described by Stansell (12). 

For the TRANSIT system the measurement is a count of the 

number of difference frequency cycles between a reference and 

a signal containing a doppler shift due to motion of the 

transmitter. This type of measurement is called an integrated 

doppler measurement by Stansell (12) because the frequency 

count is represented mathematically by an integral of the dif

ference frequency over an interval of time. Thus if p is the 

position separation or range between transmitter and receiver, 

fjj the doppler frequency and c the velocity of propagation, 

the doppler count N(n) over the time period t=n-l to t=n is 
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n 

N(n) I (2.1) 

n-1 

n 

( 2 . 2 )  

n-1 

î f 
(g^) P dt (2.3) 

n-1 

- -^[p(n)-p(n-l)] 
c 

(2.4) 

where f^ is the transmitted frequency and f^ is the received 

frequency. Thus, for example, if the range p or one of its 

components is one of the describing state variables of the 

system, the measurement equation would be of the form 

where v(n) is any uncorrelated measurement noise. 

In the Kalman format the optimal estimation problem for 

a system with a measurement of this type may be stated as 

follows: 

Problem 2; Consider the system 

process; x(n+l) = (j)(n)x(n) + B(n)u(n) (2.6) 

measurement: y(n) = M(n)x(n) + N(n)x(n=l) + v(n) (2.7) 

y(n) = M(n)x(n) + N{n)x(n-1) + v(n) (2.5) 
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where N is a mxn measurement matrix and the other matrices 

and vectors are as defined previously with 

cov[u(n)] = Q(n)ô^ (2.8) 

cov[v(n)] = R(n)ô^ (2.9) 

E[u(n)v*(m)] = 0 (2.10) 

cov[x(0)l = P(0) (2.11) 

E[x(0)u'(n)] = 0 (2.12) 

E[x(0)v'(n)] = 0 (2.13) 

Given P(0) and the set of measurements {yd) / y(2),..., y(n)} 

the problem is to find the optimal estimate of x(n), &(n|n), 

which minimizes the mean square filtering error. 

The Brown-Hartman Algorithm 

The solution to Problem 2 as stated by Brown and Hartman 

(7) is given below. 

The solution to Problem 2 is the optimal estimate given 

by 

x(n|n) = x(n|n-l) + K(n) [y(n)-M(n)x(n|n-1) 
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&(n|n-l) = <|) (n-1)X(n-11n-1) (2.15) 

S(n) = M(n)P(n|n-l)M'(n) + N(n)P (n-l |n-1)N* (n) 

+ N(n)P(n-l|n-l)(j>* (n-l)M'(n) + R(n) 

+ M (n) (J) (n-l) P (n-l I n-l) N'(n) (2.16) 

K(n) = [P(n|n-l)M'(n) + (j) (n-l)P (n-l 1 n-l)N'(n) ] s"^ (n) 

(2.17) 

P(n|n-1) = (J) (n-l) P (n-l I n-l) (|) • (n-l) 

+ B(n-l)Q(n-l)B'(n-l) (2.18) 

P(n|n) = P(n|n-1) - K(n) [M(n)P(n|n-l) 

+ N(n)P(n-l|n-l)*'(n-l)] (2.19) 

with initial conditions 

a ( 0 | 0 )  =  0  
( 2 . 2 0  

P(0|0) = P(0) 

The nxn matrix P(n n) is the covariance of the filtering 

error x(n)-2(n|n). The initial error covariance is equal 

to the covariance of the initial state since the initial 

estimate is zero for the zero-mean initial state case. 

It is common practice to refer to any filtering algo-

llLIim Lhât the estimation error covariance as a 
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covariance filter. 

Some important properties of the system described in Prob

lem 2 and its optimal estimate that will be of value in later 

chapters are stated below. 

Comment 1; E[x(n)v'(m)] = 0 all m,n (2.21) 

To obtain this result start with (2.6) and observe that 

n 
x(n+l) = [ n $(i)]x(0) 

i=l 

n n 
+ Z [ n (j>(j)]B(i)u(i) (2.22) 
i=0 j=i+l 

where the products defined by II are taken on the left and 

k-1 
n (j)(j) = I (2.23) 
k 

the nxn identity matrix. 

Then 

n-1 
E[x(n)v'(m)] = E{ [ n ^(i) ]x(0)v* (m)} 

i=0 

n-1 n-1 
+ E{ Z [ n (j)(j)]B(i)u(i)v'(m)} (2.24) 

i=0 j=i+l 

n—1 
= [ n (j) (i) ]E[x(0)v' (m) ] 

i=n 
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n-1 n-1 
+ Z [n (j>(j)]B(i)E[u(i)v'(m)] (2.25) 

i=0 j=i+l 

=  0  ( 2 . 2 6 )  

using (2.13) and (2.10). 

Comment 2; E[x(n}u'(m)l = 0 m>n (2.27) 

To obtain this result, proceed similarly to Comment 1 and 

n-1 
E[x(n)u'(m)] = [ II (j) (i) ]E[x(0)u'(m) ] 

i=0 

n-1 n-1 
+ 2 [ n *(i)]B(i)E(u(i)u'(m)] (2.28) 
i=0 j=i+l 

=0 (2.29) 

using (2.12) and the result from (2.8) 

E[u(i)u' (m)l = 0 i M m (2.30) 

and 

1 — 0/1/...^n-l (2.31) 

Comment 3: E[&(j|j)v'(k)] = 0 k>j (2.32) 

To obtain this result start with (2.14) and (2.15) to show 

that &(j|j) is a linear combination of measurements as 

n n 
&(n|n) = r [ n A(j)]K(i)y(i) (2.33) 

i=i j=i+i 
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The products defined by H are taken on the left and 

A(j) = *(j-l) - K(j)M(j)<j>(j-l) - K(j)N{j) 

and 
n 
n A(j) = I 

n+1 

where I is the nxn identity matrix. 

Then using (2.7) 

n n 
E[x(n|n)v'(k)] = Z [ n A(j)]K(i)E[M(i)x(i) 

i=l j=i+l 

+ N(i)x(i-l)+v(i) ]v'(k) 

n n 
=  E [ n  A ( j ) l K ( i )  [ M ( i ) E x ( i ) v ' ( k )  
i=l j=i+l 

+ N(i)Ex(i-l)v'(k) + Ev(i)v'(k)] 

= 0 k>n 

using Comment 1 and (2.9). 

Comment 4; E[Sc( j 1 j)u'(k) ] = 0 k^j 

To obtain this result, proceed similarly to Comment 3 
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n n 
E[a(n|n)u'(k)] = Z [ n A(j) ]K(i)Ey (i)u'(k) (2.40) 

i=l j=i+l 

n n 
= z [ n A(j)lK(i) [M(i)Ex(i)u'(k) 
i=l j=i+l 

+ N(i)Ex(i-l)u'(k) +Ev(i)u'(k)] (2.41) 

= 0 k>n (2.42) 

using Comment 2 and (2.10). 

Numerical Properties of the 
Filter 

Some numerical properties of the Brown-^artman covariance 

filter have been studied by Stuva (13) and compared with 

another form of measurement update suggested by Brown. This 

new update is 

S(n) = [M(n) <j) (n-l)+N(n) ]P(n-l I n-1) [M(n) <|) (n-1) 

+ N(n)]' + M(n)B(n-l)Q(n-l)B'(n-l)M'(n) + R(n) 

(2.43) 

K(n) = {*(n-l)P(n-l|n-l)[M(n)4(n-l)+N(n)]' 

+ B(n-l)Q(n-l)B'(n-l)M'(n)}s"l(n) (2,44) 

r i ii/ — . I —1 \ 
— r i il J-/ _ r r  O  f ^ \  (2.45) 
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a(n|n) = &(n|n-l) + K(n){y(n) 

- [M(n)$(n-1) + N(n) ]5è(n-l[n-l) } (2.46) 

The study involved investigation of the numerical accu

racy of the calculation of S(n) and of position error 

components of K(n) for an integrated inertial/doppler-satellite 

navigation system. The problem arises from the fact that 

errors in fixed word length digital machines tend to accu

mulate when a large number of iterations is made. The 

parameters that were varied in the study were the time incre

ment At between measurements and the measurement noise. In 

all cases the new algorithm gave more accurate results, 

particularly for the cases of small At or small measurement 

noise. 
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CHAPTER III. SEQUENTIAL PROCESSING OF DELAYED 

MEASUREMENTS 

A method of processing the scalar components of a vector 

measurement individually or in small groups is extremely 

valuable since it allows the effects of each to be examined 

independently. This sequential processing technique also 

has significant computational advantages since matrix inverse 

operations are reduced to the trivial scalar case or at least 

to smaller size matrices. Inverses of large matrices are un

desirable because of the requirements for time and storage 

and the accuracy of the end result. 

The sequential processing technique for the conventional 

Kalman filter cannot be applied for the delayed state measure

ment case because of the dependence of the measurement on the 

previous state. Whenever a component of the measurement is 

processed, new information about the previous state is intro

duced which must be utilized in an optimal manner. The new 

results presented here utilize the information contained in 

the components of the delayed state measurement optimally 

for any partitions of the measurement vector for which the 

measurement errors are uncorrelated. 

The sequential technique may be of some value for the 

case in which time intervals for various measurement 

components are not exactly coincidental. In certain cases 
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even small misalignment can lead to gross inaccuracies if 

the estimate calculation is sensitive to the measurement 

matrices (14). With sequential processing the measurements 

can be handled individually with the measurement matrices 

for each evaluated at the appropriate instants of time. 

The delayed state sequential processing algorithm is 

as follows; 

If the measurement vector can be partitioned into P 

components 

x(n) 

y^fn) 

y(n) = 

N^(n) 

Ng (n) 

Np(n) 

x(n-l) + 

v^(n) 

Vjin) 

Vp(n) 

(3.1) 

such that 

E{v^ (n)vî (n) } = ôj^jR^(n) (3.2) 

the optimal estimate can be obtained by using the delayed 

state ccvariance filter to obtain 5^j^(h!n) and from 

and the following algorithm p-1 times to process 
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(n)...yp(n) with the index i assuming the values 2,...,p 

S^(n) = M^(n)P^_j^ (n|n)M|(n) 

+ (n)Pj^_^ (n-l,nln)M| (n) 

+ Mu(n4P^ ^(n-1, n|n)N|(n) 

+ N^(n)P^_,^(n-lln)N[{n) + R^{n) (3.3) 

K^(n) = [P^_^{n|n)M[(n) + P!_i(n-1, nln)Nj^(n) ]s7^ (n) 

(3.4) 

P\(n n) = P^_j^(n|n) - (n)(n) K| (n) (3.5) 

&i(n|n) = a%_^(n|n) + K^(n)[y^(n) - (n)Xj^_j^ (njn) 

- N\(n)x^_i(n-l|n)] (3.6) 

W^(n) = [P^_j^(n-1, nln) M^(n) + P^_j^ (n-11 n)N| (n) ]s7^ (n) 

(3.7) 

P!^n-l,n|n) = P(n-l,nln) - K_(n)S^(n)Wj(n) (3.8) 

Pi(n-l|n) = Pi_i(n-l|n) - (n)S-(n)W[(n) (3.9) 

x^fn-ljn) = 2i_i(n-l|n) +W^(n)[y^(n) 

- M^(n)x^_i(n|n) - NL(n)&^_^(n-l|n)] (3.10) 
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where 

Pj(n-l,n|n) = (J) (n-1)P (n-11 n-1) - (n)(n)Wj^ (n) (3.11) 

P^(n-l|n) = P(n-l|n-l) - W^(n)S^(n)Wj(n) (3.12) 

x^(n-l|n) = x(n-l|n-l) + W^(n)[y^(n) 

- M^(n)x(n|n-1) - N^(n)x(n-l|n-l)] (3.13) 

W^(n) = [P (n-l I n-1) (j)* (n-l)M| (n) + P (n-11 n-1) (n) ] (n) 

(3.14) 

The final estimate & (nln) and error covariance P (nln) 
P P 

are the optimal estimate and covariance respectively at time 

n. It is not necessary to use equations (3.7) through 

(3.10) on the last iteration. 

Now it will be shown that the same results are obtained 

from both sequential and conventional simultaneous processing 

for the case p=2 corresponding to a single partition of the 

measurement equation. 

The simultaneous method may be expressed in terms of the 

partitioned quantities as follows: 

For the gain matrix, the result is 
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K(n) = {P(n|n-1)[M^:M^] + (j)P (n-lin-1) }. 

{[-•]P(nln-l) + [^-]P(n-l|n-l) [N][:n^] 

R^. 0 

+ tj^--]<i>P{n-ljn-l) [N^IN^]} ̂  (3.15) 

= [P (n 1 n-1 ) M|+(j)P (n-11 n-1 ) N[ : P (n I n-1 ) M^+*P (n-11 n-1 ) N J ] 

(3.16) 

(3.17) 

^1 : ̂2 -1 
[m* '-'T ] 
^3 • ̂ 4 

where 

T1 = M^P(nln-l)Mj^+N^P(n-l|n-l)Nj^+R^ 

+ N, P (n-11 n-1) (j) • Ml+M^4P (n-11 n-1) N[ 

T2 = M^P(n|n-l)M^+Nj^P(n-l|n-l)N^ 

+ N^P (n-1 ln-1) *'M^+M^*P (n-1 j n-1) 

T3 = (T2)' 

(3.18) 

(3.19) 
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T4 = MgPXnjn-DM^ + NgPfn-lln-llN^ 

+ NgPfn-lln-liO'M^ + (n-11 n-1) + Rg (3.20) 

For the covariance, the result is 

"i "i 
P(n|n) = P (n |n-l) ~K(n) {[* " IP (njn-l) + [ * * * ]P (n-1 |n-l) (J)'} 

2 2 

M-P(n|n-l)+N.P(n-1|n-1) 

= p{n|n-ii-Kin)[a^2(A|A:i)+N;p;n:itn:i;*'' (3.211 

The estimate in terms of the partitioned quantities is 

Yl-Mijc (n I n-1) (n-11 n-1 ) 

S(n|n) = ain|n-l)+K{n)[y'_û^â(A|n-i):N2a(n:lin:l)' 

(3.22) 

The sequential method for the covariance is 

Kj^in) = [P(n|n-l)Mj+*P(n-l|n-l)Ni]S^l(n) (3.23) 

S^(n) = M^P(nln-l)M|+N^P(n-l|n-l)N| 

+ N^P(n-l|n-l)*'Ml+M^*P(n-l|n-l)Nl+R^ (3.24) 

P^(n|n) = P(n|n-l)-K^[M^P(n|n-l) 

+ N^P(n-lln-l)<J)'] (3.25) 
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Kgtn) = [P^(nln)M^+Pj^(n-l,nln)N^]S2^(n) (3.26) 

Sgfn) = MgP^fnlnXM^+NgPitn-lfnlnlM^ 

+ MgPÎfn-lfnlnlN^+NgPifn-lInlN^ + (3.27) 

Pgfnin) = P^fnlni-KgSgK^ 

= P(n|n-1)-K^S^K^ (3.28) 

-[P^ (n!n)M^+PJ^ (n-l,n|n)N^](n|n)fNgPi(n-l,n|n) ] 

(3.29) 

Substituting for P^(n|n), P^(n-l,n|n) and K^(n) gives the 

following factored form 

Pg(n|n) = P(n|n-1) 

[P (n I n-1) M[+<J)P (n-11 n-1) N]^ :p (n 1 n-1) M^+(})P (n-11 n-1) NJ ] 

[«:?.«] (3.30) 
T7 : T8 M2P(n|n-l)+N2P(n-l|n-l)*' 

where 

T5 = S^^+{S^^[Mj^P(nln-l)+N^P(n-l|n-l)(j)']M^ 

+ }S2^{[P (n 1 n-DM^+OP (n-11n-l)Nj] 

+ NgW^} (3.31) 
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T6 = -{S^^[M^P(n1n-1)+N^P(n-1In-1)]M2 

+ (3.32) 

T7 = (T6)' (3.33) 

T8 = (3.34) 

Comparing the two results for P(n|n) it is seen that they 

will be the same if 

T1 : T2 T5 : T6 
[i3V-l =[-•/••] (3.35) 

or 

= I (3.36) 
T7 : T8 T3 : T4 

where I is the mxm identity matrix. The conditions then can 

be expressed as 

T5T1 + T6T3 = I 

T7T2 + T8T4 = I 
(3.37) 

T5T2 + T6T4 = 0 

T7T1 + T8T3 = 0 

where 0 is a null matrix. These conditions are shown to hold 

by substitution for the indicated terms and then for W^. 

The aeqnmntial method for the optimal estimate is 
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&^(n|n) = 2(n|n-l)+K^[y^-M^&(n|n-l)-N^&(n-l|n-l)] (3.38) 

Xgfnln) = x^(n|n)+K2[y2-M22i(n|n)-N22i(n-l|n)] (3.39) 

Substituting for &^(n|n) and 2^(n-l|n) and factoring gives 

5^2 {n|n) = [Kj^-K2 (M2Kj^+N2W^) :K2] 

y -M A(n1n-1)-N,&(n-1|n-1) 
^ ] (3.40) 

In-1)-NgX(n-11n-1) 

Comparing this with the simultaneous result it can be seen 

that they are the same if 

[P (n I n-1) M^+<()P (n-11 n-1) :P(n| n-l)M^+*P (n-11 n-1) NJ] 

T1 : T2 -1 

^T3 : T4^ 

= [K^-K2(M2K3^+N2Wj^) ;K2] (3.41) 

Or, using Equation (3.35), the two results will be the 

same if 

[P (n 1 n-1)M|+<()P (n-11 n-l)Nj^:P (n|n-l)M^+*P (n-1 jn-1)N^] 

T5 : T6 

^T7 : T8^ 

= [K^-K2(M2Kj^+N2Wj^) :K2] (3.42) 
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The term in the 1 , 2  position is 

[P (n I n-1) Mj[+(J)P (n-11 n-1 )N[] T6 

+ [P(n|n-l)M^+*P(n-l|n-l)N^]T8 

Substituting for T6, T8 and then for and Equations (3.25) 

and (3.11), the result for Kg is obtained. 

The 1,1 term is 

[P(n|n-l)Ml+*P (n-l|n-l)Nj^lT5 

+ [P(n|n-l)M^+*P(n-l|n-l)N^]T7 

Substituting for T5, T7 and then for and using the result 

just obtained for the 1,2 term, the above expression can 

be seen to be [K^-Kg (MgK^^+NgW^) 1 

It has been shown now that the sequential algorithm can 

be used to process the second component of a partitioned meas

urement vector. Since the same operations are involved it 

can be seen that the same algorithm can be used for the third 

or other components of a partitioned measurement. However 

since Pgfn-lln) and Pgfn-lynin) are required for 

any such further partitioned components, it is necessary to 

show that correct results are obtained sequentially for these 

quantities. 

First consider the seqUeuLial solution for r*(n-l,n!n). 

This is 
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to 

Ej(n-l,n|n) = (j)P (n-11 n-1)-K^S^^W (3.43) 

P%(n-l,n|n) = P^fn-lfnlnj-KgSgW^ (3.44) 

Substituting for K^, W^, and Wg and factoring leads 

P^(n-l,n|n) = *P(n-l|n-l) -

[P (n I n-1 ) Mj^+(j)P (n-11 n-1 ) N| : P (n 1 n-1 ) MJ+<))P (n-11 n-1 ) 3 

T5 : T6 M^p(n-lln-l)+Nj^P(n-l|n-l) 

^T7ÏT8^ [M2ÔP(n-lin^l)+N^P(n-i|n-i)] (3.45) 

The simultaneous solution for P'(n-l,n|n) in terms of 

the partitioned quantities requires that W(n) be expressed 

in the same terms. For W(n)y the result is 

W(n) = [P(n-l|n-l)4'M'+P(n-l|n-l)N']s"l(n) (3.46) 

= {P(n-l|n-l)(J)'[Mj:M^3+P(n-l|n-l) [N|:N^l}s"^(n) (3.47) 

= [P(n-lln-l)(j)'Mj^+P(n-l|n-l)N^:P(n-lln-l)(j>'Mj 

+ P(n-I|n-1)NJ1 S~^(n) (3.48) 

Now using (3.16), the simultaneous solution for 

P'(n-l,n|n) is 
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P'(n-l,n|n) = *P(n-l|n-l)-K(n)S(n)W'(n) (3.49) 

= (t>P(n-l|n-l) 

-[P(nIn-l)Mj+*P(n-1|n-l)N^:P(n|n-l)M^+*P(n-1|n-1)N^l 

T1 ; T2 ML*P(n-l|n-l)+N,P(n-l|n-l) 
• # # # a » « • * , « • 1 (3.501 

^3 : T4^ lM24P(n-l|n-l)+N2P(n-l|n-l)' ^ ' 

Comparing this equation with (3.45), it can be seen they are 

the same since the condition for equality already has been 

obtained as (3.35). 

For P(n-1In) the sequential solution is 

P^(n-lln) = P(n-l|n-l)-W^(n)S^(n)Wj^(n) (3.51) 

P2(n-l|n) = P^(n-l|n)-W2(n)S2(n)W^(n) (3.52) 

Substituting for and Wg and factoring the result gives 

P2(n-l|n) = P(n-l|n-l) - (3.53) 

[P(n-1In-1)*'Mj+P(n-1|n-1)P(n-1|n-l)*'MJ+P(n-1|n-l)N^]. 

jT5 : T6j jM^(|)P(n-ll n-l) +Nj^P(n-l| n-1) ̂ 

TV:*T8 M2ip*(n-lln-l)+N2P(n-i|n-i) 

The simultaneous solution for P(n-l|n) expressed in 

terms ot the partitioned subiûatïiûê» of th£ mscGurczcnt 

equation is 
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P(n-l|n) = P(n-l|n-l) = W(n)S(n)W'(n) (3.54) 

= P(n-l|n-l) -

[P (n-11n-1) (})'M£+P (n-11n-l)N^:^'(n-11n-1) 4M^+P (n-1 |n-l)N^]. 

tîK=.T?l (3.55) 
T3 : T4 M2<j)P (n-11 n-1 ) im^P (n-11 n-1 ) 

Again comparison of the two solutions shows they are equal 

because of (3.35). 

In terms of partitioned quantities the simultaneous 

solution for x(n-l|n) is 

2(n-l|n) = X(n-11n-1) 

y,-M,X(nIn-1)-N,x(n-1|n-1) 

^ ̂ ^y2"M2x(nin-l)-N2S(n-i|n-i)] (3.56) 

The sequential solution is 

x^(n-l|n) = x(n-l|n-l)+W^[y^-M^a(n|n-l)-N^x(n-l|n-l)] 

(3.57) 

a2(n-l|n) = &^(n-l|n)+W2[y2-M2&2(n|n)-N222(n-l|n)] 
(3.58) 

Substituting for x^(n|n) and 2^(n-l|n) and factoring gives 
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Xgfn-lln) = a(n-l|n-l) + [W^-WgCMgKi+NgW^lIWg]. 

y^-M x{nin-l)-N^x(n-l|n-l) _Q. 
r» • ' ' T • • • * • « , ' • 1 
lyg-MgXtnjn-lj-Ng&fn-iln-i) 

Comparing the two solutions it can be seen that they are the 

same if 

[Wi-WafMgKi+NaWi):*;] 

= [P (n-l In-1) <|)• Mj+P (n-1 |n-l)N^:P (n-1 |n-l)*'M^+P (n-11n-1)N^] 

(3.60) 
It3 : T4^ 

Or, using (3.35), if 

= [P (n-11 n-1) <j) 'M|+P (n-l|n-l)N^:P(n-l| n-1) *'M^+P (n-11 n-1) N^] 

(3.61) 
T7 : T8 

The term in the 1 , 2  position is 

[P (n-11 n-1 ) 4> • M[+P (n-11 n-1) NT6 

+ [P(n-l|n-l)*'M^+P(n-l|n-l)N^]T8 

Substituting for T6, T8 and then for the-^desired result 
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The 1,1 term is 

[P (n-11 n-1 ) 4» • Mj+P (n-1 J n-1 ) N] T5 

+ [P(n-l|n-l)4)'M^+P(n-l|n-lN^]T7 

Substituting for T5, T7 and then for and using the result 

just obtained for the 1,2 term, the above expression can be 

seen to be [W^-WgCNgK^+NgW^)]. 
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CHAPTER IV. GENERAL COVARIANCE COMPUTATION 

The expression for the estimation error covariance 

P(n|n) given by (2.19) in the delayed state covariance 

filter is an optimal calculation in that it is valid only 

when used with the optimal gain matrix. It is desirable to 

have a completely general,equation for P(n|n) that will give 

the correct error covariance resulting from the use of any 

arbitrary gain. Such an equation is obtained here in two 

different forms. The first of the new equations will be more 

numerically stable since it is the sum of symmetric, posi

tive definite matrices (8) while the second generally will 

require fewer arithmetic operations. Both forms will be 

shown to be stabilized against small errors in gain calcu

lation when used with optimal gains. 

The results obtained here may be stated as follows: 

If a suboptimal gain is used with the delayed state 

covariance filter, the covariance of the estimation error 

P(n|n) is given by 

P (n| n) = (n-1) -K(n) [M(n) (p (n-l)+N(n) ] }P (n-1 [n-1) {$(n-l) 

- K(n)[M(n)*(n-l)+N(n)]}' + K(n)R(n)K'(n) 

+ [I-K(n)M(n)]B(n-l)Q(n-l)B' (n-1) [I-K(n)M(n) ] ' 

(4.1) 

or 
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P(njn) = P(n|n-l)-[P(n|n-l)M'(n) 

+ (j>(n-l)P(n-l|n-l)N* (n) ]K'(n) 

- K(n) [M(n)P(n|n-l)+N(n)P(n-l|n-l)*' (n-1)] 

+ K(n)S(n)K'(n) (4.2) 

To obtain the first expression for P(n|n), use (2.6) and 

(2.14) 

P(n|n) = cov[x(n)-&(n|n)] (4.3) 

= cov{ (J) (n-1) X (n-1) +B (n-1) u (n-1) -k (n | n-1) 

- K(n)[y(n)-M(n)&(n|n-l)-N(n)&(n-l|n-l)]} (4.4) 

Using (2.15) and dropping time notation for convenience 

P(n|n) = E{*x+Bu-*x+KM4a+KNx 

-Ky} {(j)x+Bu-(J>x+IQi<|>x+KNx-Ky} ' (4.5) 

Using (2.7) 

P(n|n) = E{*x+Bu-4a+KM*2+KNa 

-KNX-KV-KM(()X-KMBU } 

{(J)X+Bu- (i>x+KM(l>ic+KN^c-KNx-Kv-KM(|)X-KMBu }' (4.6) 
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= E{ (I-KM)(j)(x-x)-KN(x-x) 

-Kv+(I-KM) Bu}{ (I-KM) (j) (x-ic) 

-KN(x-a)-Kv+(I-KM)Bu}' (4.7) 

= E((j)-KM(j)-KN) (x-x) (x-a)X*-KM4-KN) ' 

+EKw'K'+E(I-KM)Buu'B' (I-KM) ' 

-E(<j)-KM(j)-KN) (x-x) (v'K') 

-E(<()-KM(J>-KN) (x-x) (u'B') (I-KM) ' 

-E(Kv) (x-x) • (<|)-KM(j)-KN) ' 

+E(Kv)(u'B')(I-KM)• 

+E(I-KM) Bu(x-%)t($-KM*-KN)' 

-E(I-KM)Buv'K' (4.8) 

The last six terms are zero from Comments 1 through 4 and 

Equation (2.10) so 

P(n|n) = (*-KM*-KN)P(n-l|n-l) ($-KM(|)-KN) ' 

+KRK'+(I-KM)BQB'(I-KM)' (4.9) 

Next, the form for P(n|n) given by Equation (4.2) will 

be shown to be correct. Expand (4.1) algebraically and 

rearrange as 
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P(nln) = *P(n-l|n-l)*'-4P(n-l|n-l)[M*+N]'K' 

-K [M*+N] P (n-11 n-1 ) (j) • +KRK ' 

+K[M4+N]P(n-l|n-l)[M*+N]'K' 

+(I-KM)BQB'(I-KM)• (4.10) 

= (j)P(n-lIn-l) (j)'+BQB'+KRK' 

- [ (j)P (n-11 n-1 ) (f) '+BQB ' ] M • K ' 

-KM[<j)P (n-1 |n-l)*' +BQB' ] 

+KM [ (j)P ( n-11 n-1 ) (J) '+BQB • ] M • K • 

-(j)P (n-11 n-1 ) N ' K • - KNP (n-11 n-1) (j) ' 

+K [NP(n-l|n-l)*'M' 

+M*P(n-l|n-l)N'+NP(n-l|n-l)N']K' (4.11) 

= P(n|n-l)-P(n|n-l)M'K'-KMP(n|n-l) 

+KMP(nln-l)M'K'+KRK' 

-<J)P (n-11 n-1 ) N • K ' -KNP (n-11 n-1) (f) ' 

+K [NP (n-11 n-1 ) (J) • M • +M((>P (n-11 n-1 ) N' 

+NP(n-l|n-l)N']K' (4.12) 
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= P(nln-l)-P(n|n-l)M'K'-KMP(n|n-l) 

+K[MP(n|n-l)M'+R]K' 

-(J>P (n-11 n-1 ) N ' K '-KNP (n-11 n-1) <j> ' 

+K[NP(n-1In-1)*'M'+M*P(n-1|n-1)N' 

+NP(n-l|n-l)N']K' (4.13) 

= P(n|n-l)-P(n|n-l)M'K'-KMP(n|n-l) 

+KSK'-*P(n-l|n-l)N'K'-KNP(n-l|n-l)*' (4.14) 

= P(n|n-l)-[P(n|n-l)M'+ P(n-l|n-l)N']K' 

-K[MP(n|n-l)+NP(n-l|n-l)*'] + KSK' (4.15) 

which is the same as (4.2). This does not have the property 

of consisting of the sum of positive definite symmetric 

matrices as does (4.1), but is more efficient computationally 

since products of nxn matrices are avoided. 

Comment 5: The general expressions for P(n|n), Equations 

(4.1) and (4.2), are stabilized against first order errors 

in optimal gain calculation. 

This can be demonstrated by incrementing the gain K by 

AK and determining the corresponding AP. Ignoring second 

order terms and using (4.1) 
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P(n|n)+AP(n|n) = [*-(K+AK)(M*+N)]P(n-l|n-l) 

[*-(K+AK)(M*+N)]'+(K+AK)R(K+AK)' 

+ [I-(K+AK)M]BQB'[I-(K+AK)M]' (4.16) 

= [*-K(M4+N)]P(n-l|n-l)[*-K(m$+N)]' 

-[AK {M<|)+N) ]P(n-l|n-l) [<j)-K (M(J)+N) ] ' 

-[4-K(M*+N)]P(n-l|n-l)[AK(M*+N)]' (4.17) 

+ KRK'+AKRK'+KR(AK)• 

+ (I-KM)BQB'(I-KM)• 

- AKMBQB'(I-KM)' 

- (I-KM)BQB'(AKM)' . 

The covariance increment is 

AP(n|n) = AK{-(M<J)+N)P(n-l|n-l) [({)-K(M(l)+N)] ' 

+RK'-MBQB'(I-KM)•} + {•}'(AK)' (4.18) 

where the notation f•} indicates that both terms in braces 

in the expression are the same. Thus AP consists of two 

terms which are the transpose of each other. 

Rearranging the expression for AP gives 
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AP(n|n) = AK{-(M*+N)P(n-l|n-l)4' 

- MBQB' + [M({>+N)P(n-l|n-l) {M(j)+N) ' 

+ R+MBQB'M']K'} + {•}'(AK)* (4.19) 

= AK{-(M(j)+N)P(n-l |n-l) (j)'-MBQB' 

+ [M*P(n-l|n-l)*'M'+NP(n-l|n-l)N' 

+ M*P(n-l|n-l)N'+NP(n-l|n-l)*'M' 

+ R+MBQB'M'IK'} 

+ {•}'(AK)• (4.20) 

Using Equations (2.16) and (2.18) 

AP(n|n) = AK{-(M0+N)P(n-l|n-l)0' 

- MBQB' + SK'} 

+ {•}'(AK)' (4.21) 

Substituting Equations (2.17) and (2.18) 

AP(n|n) = AK{-(M4+N)P(n-l|n-l)*' 

- MBOB'+MP(n|n-l)+NP(n-l|n-l)*'} 

+ {•}'(AK)' (4.22) 

= 0 (4.23) 
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so the increment in P is zero, at least for first order ef

fects, when using optimal gains. 

An identical conclusion can be reached for the second 

form of P(n|n), Equation (4.2). Proceeding as for (4.1) 

and ignoring second order terms again 

P(n|n)+AP(n|n) = P(n|n-1) 

- [P(n|n-l)M'+*P(n-l|n-l)N'][K+AK]' 

- [K+AK] [MP(n|n-l)+NP(n-l[n-l)(j»'] 

+ [K+AK]S[K+AK]' (4.24) 

= P(n|n-l)-[P(n|n-l)M'+*P(n-l|n-l)N']K' 

- [P(n|n-l)M'+*P(n-l|n-l)N'](AK)' 

- K[MP(n|n-l)+NP(n-l|n-l)*] 

- (AK) [MP (n 1 n-1)+NP (n-1 jn-l) (}> ' 3 

+ KSK'+KSAK'+AKSK* (4.25) 

or 

AP(n|n) = AK[SK'-MP(n|n-l)-NP(n-l|n-l)*] 

+ [KS-P(n|n-l)M'-(j)P(n-l|n-l)N'] (AK) • (4.26) 

= 0 (4.27) 

These results should be compared with the result obtained 

using (2.32). For that case 
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P(n|n) = P(n|n-l)-K[MP(n|n-l)+NP(n-l|n-l)*'] (4.28) 

so 

P(n|n) + AP(n|n) = P(njn-1)-[K+AK][MP(n|n-1) 

+ NP(n-l|n-l)*'] (4.29) 

or 

AP(n|n) = -(AK)[MP(n|n-l)+NP(n-l|n-l)*'] (4.30) 

Thus the conventional equation is not stabilized against 

errors in gain calculation. 



www.manaraa.com

44 

CHAPTER V. DELAYED STATE INFORMATION FILTER 

The previous algorithms for the delayed state filter 

involve propagation of the error covariance from step to step. 

A new algorithm now will be presented that shows that the 

delayed state filter also may be implemented in a form in 

which the inverse of the error covariance matrix is propagated. 

Estimation algorithms of this type often are referred to as 

information filters. This technique is very advantageous 

for the case in which pessimistic values are assigned for 

P(0|0) (10). For this case the initial covariance would be 

very large, leading to starting problems if the covariance 

filter implementation is applied directly. If the inverse 

of the covariance matrix is used, the starting problems are 

avoided since P ^(0[0) would be very small. This information 

filter is equivalent to the covariance form in the sense that 

the same information is obtained but it is not algebraically 

identical. Thus the numerical behavior may be substantially 

different. 

For the information filter implementation, the optimal 

estimate for Problem 2 may be obtained from d(n|n) and 

P ^(n|n) or d(n|n-l) and P ^(njn-l) using the definitions 

d(n|n) = P l(n|n)x(n|n) (5.1) 

d(n|n-l) = P ^(n|n-l)x(n|n-l) (5.2) 
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and the following algorithm, if the indicated inverses exist: 

d(n|n) = d(n|n-l)+C'(n)V ^(n){y(n) 

- N(n)*"l(n-l)H(n)d(n|n-l)} (5.3) 

d(n|n-l) = J(n)$ ̂ (n-l)d(n-l|n-l) (5.4) 

C'(n) = M'(n)+J(n)*"T(n_i)H,(n) (5.5) 

V(n) = R(n)+N(n)4"l(n-l)H(n)J(n)4"T(n_i)N,(n) (5.6) 

H(n) = B(n-l)0(n-l)B'(n-l) (5.7) 

J(n) = I-P(n)B(n-l)[0"l(n-l)+B'(n-l)F(n)B(n-l)]"lB' (n-1) 

(5.8) 

F(n) = *"T(n_i)p-l(n_i|n-l)*"l(n-l) (5.9) 

P"l(n|n-1) = J(n)F(n) (5.10) 

P~^(n|n) = p"l(n|n-l)+C'(n)v"l(n)C(n) (5.11) 

where 

*"T(n-l) = [*"l(n-l)]' (5.12) 

and I is the nxn identity matrix. 

To verify the algorithm, it is necessary to show that 

both the time update and measurement are correct in the 

event that a measurement is not available at time n. For 

P ^(n|n-l) use (2.18) and (5.10) and consider the product 
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P(n|n-l)P"l(n|n-l) 

= [<}> (n-1) P(n-l|n-l) ({)'(n-1) 

+ B(n-l)Q(n-l)B* (n-1) ]J(n)F(n) (5.13) 

= [4(n-l)P(n-l|n-l)*' (n-l)+B(n-l)Q(n-l)B' (n-l)]{F(n) 

- F(n)B(n-l)[Q"^(n-1)+B'(n-l)F(n)B(n-1)]"^B*(n-l)F (n)} 

(5.14) 

= I+B(n-l)Q(n-l)B'(n-l)F(n) 

- B(n-l) [0"l(n-l)+B' (n-l)F(n)B(n-l) ]'^B' (n-l)F(n) 

- B(n-l)Q(n-l)B'(n-1)F(n)B(n-1)[Q"^(n-1) 

+ B'(n-l)F(n)B(n-l) ]"^B'(n-l)F(n) (5.15) 

= I + {B(n-l)Q(n-l)B'(n-l) 

- [I+B(n-l)Q(n-l)B'(n-l)F(n)]B(n-1)[Q"^(n-1) 

+ B'(n-l)F(n)B(n-l)l'^B'(n-l)}F(n) (5.16) 

= I + {B(n-l)Q(n-l)B*(n-1)-B(n-l)Q(n-l)[Q ̂ (n-1) 

+ B'(n-l)F(n)B(n-l)][0"l(n-l) 

+ B'(n-l)F(n)B(n-l)]"^B'(n-l)}F(n) (5.17) 
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= I+{B(n-l)Q(n-l)B'(n-1) 

- B(n-l)Q(n-l)B'(n-1)}F(n) (5.18) 

= I . (5.19) 

Thus (5.10) is a correct expression for P ^(njn-l). 

To verify Equation (5.4) for the time update of the 

estimate, start with (2.15) as 

x(n|n-l) = (j) (n-1) ic (n-11 n-1) (5.20) 

= (j)(n-l)P(n-l|n-l)(|>* (n-l)(j) "^(n-l)? ^ (n-11 n-1) x (n-11 n-1) 

(5.21) 

P ^(nIn-1)X(nIn-1) 

=p"\n I n-1) <j) (n-1) P (n-11 n-1) (J) '(n-1) (^'^(n-Df^n-l | n-l)x (n-11 n-1) 

(5.22) 
Using (5.10) and (5.2) 

d(n|n-l) = J(n)(|)"'^(n-l)d(n-lln-l) (5.23) 

which is the result stated as Equation (5.4). 

Now verify the measurement update portion of the algo-

rithm. For the covariance P (n|n) use Equations (5.11) and 

(2.19) and then substitute from Equations (5.6), (5.5) and 

(2.17). Consider the product 
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P(n|n)P"^(n|n) = {P(n|n-l)-K[MP(n|n-l) 

+ Np(n-l|n-l)4']}[p"l(n|n-l)+c'v"lc] 

= {P(n|n-l)-[P(n|n-l)M'+*P(n-l|n-l)N']s"l 

[MP (n 1 n-1) +NP (n-11 n-1) <J) ' ] } { P"^ (n 1 n-1) 

+ [M'+p"l(n|n-l)*P(n-l|n-l)N']v"l[M+ 

+ NP(n-l|n-l)*'P"l(n|n-l)]} 

= I+P(n|n-1)[M'+p"l(n|n-l)*P(n-l|n-l)N']v"l(M+ 

+ NP(n-l|n-l)*'p"l(n|n-l)] 

- [P(n|n-l)M'+(j)P(n-l|n-l)N'lS~^[MP(n|n-l) 

+ NP(n-l|n-l)*']P"l(n|n-l) 

- [P (n I n-1 ) M ' +4)P (n-11 n-1 ) N ' ] s"^ (MP (n | n-1) 

+ NP(n-l|n-l)4>'] [M'+P"l(n|n-l)*P(n-l|n-l)N']V 

+ NP(n-l|n-l)*'P~l(n|n-l)] 
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i+[P(nln-l)M'+<f>P(n-l|n-l)N' ] 

- S~^[MP(n|n-l)+NP(n-lln-l)(J)'] [M' + 

+ P"^(n|n-1)OP(n-l|n-l)N']V~^}[M+ 

+ NP(n-l|n-l)(j)'p"^(n|n-L)] 

I+[P(n|n-l)M'+*P(n-l|n-l)N']{[I-

- S~^[MP(n|n-l)+NP(n-l|n-l)(j)'] [M' + 

+ p"l(n|n-l)4P(n-l|n-l)N']]v"l-s"l}[M+ 

+ NP(n-l|n-l)*'p"l(n|n-l)] 

1+[P(nIn-l)M'+*P(n-1j n-1)N']{s"^(S-

- [MP(n|n-l)+NP(n-l|n-l) (j)'] [M' + 

+ P~^ (n I n-1 ) (j>P (n-11 n-1 ) N * ] ] v"^-s"^} [M+ 

+ NP(n-l|n-l)(j)'p"^(nln-l) ] 

I+[P(n|n-l)M'+(j)P(n-l|n-l)N' ] {S~^w"^-S 

[M+NP(n-l|n-l)0'P"l(nln-1)] 
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Thus the expression given in Equation (5.11) is the 

inverse of P(n|n). 

To obtain Equation (5.3) for the measurement update 

of the estimate, use Equation (2.14) 

x(n|n) = x(n|n-l)+K{y-Mx(n|n-l)-Nx(n-l|n-l) (5.32) 

= [I-KM]a(n|n-l)-KNa(n-l|n-l) 

+ Ky (5.33) 

p"l(n|n)x(n|n) = P"l(n|n)[I-KM]a(n|n-l)+p"l(n|n)Ky 

-P ^(n|n)KNx(n-l|n-l) (5.34) 

Using Equations (5.1) and (2.19) 

d(n|n) = {P ^(n|n-l)+P ^(n|n)KNP(n-l|n-l)4>'P ^Xn|n-l)}&(n|n-l) 

+ p"l(n|n)Ky 

- p"l(n|n)KNP(n-l|n-l)P l(n-l|n-l)&(n-l|n-l) (5.35) 

= d(n|n-l)+P ^(n|n)Ky 

+ p"l(n|n)KNP(n-l|n-l)*'d(n|n-l) 

- p"l(n|n)KNP(n-l|n-l)d(n-l|n-l) (5.36) 
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= d(n|n-l)+p"^(n|n)Ky 

- P ^(n|n)KNP(n-l|n-l)[d(n-l|n-l)-$'d(n|n-l)] (5.37) 

= d(njn-l)+P ^(n|n)Ky 

- p"^(n|n)KNP(n-l|n-l)(|)'[(J)"'^d(n-l|n-l)-d(n|n-l)l (5.38) 

Using Comment 6 and (5.9) 

d(n|n) = d(n|n-l)+P ^(n|n)Ky (5.39) 

- P~^ (n I n) KNP (n-11 n-1) (p ' FBQB ' d (n ] n-1) 

= d(n|n-l) + P ^(n|n)Ky (5.40) 

- p"^(n|n)KN(J)"^BQB'd(nln-l) 

From this equation it can be seen that (5.3) can be 

obtained if 

P~^(n|n)K = C'(n)V~^(n) (5.41) 

To obtain this result use equations (5.11) and (2.17) and then 

substitute from (2.16) and Comment 7. 

p"l(n|n)K(n) 

= [p"l(n|n-l)+C'v"lc][P(n|n-l)M'+4P(n-l|n-l)N']s"l 

(5.42) 
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= {P l(n|n-l)[P(n|n-l)M'+OP(n-l|n-l)N'] 

+ P"^(n{n-1) [P(n|n-l)M'+*P(n-l|n-l)N']v"l 

[MP (n I n-1) +NP (n-11 n-1) <|) ' ] p"^ (n | n-1) 

[P(n|n-l)M'+*P(n-l|n-l)N']}s"l (5.43) 

= P~^(n|n-1)[P(n|n-l)M'+*P(n-l|n-l)N']v"l{V 

+ [MP (n I n-1) +NP (n-11 n-1) 4> ' ] P~^ (n | n-1) 

[P(n|n-l)M'+4P(n-l|n-l)N']}s"l (5.44) 

Using (5.6) and Comment 8 

p"l(n|n)K(n) 

= P~^(n|n-1) [P(nln-l)M'+(j>P(n-lln-l)N']v"^SS'^ (5.45) 

= C'(n)v"l(n) . (5.46) 

Now it can be seen that (5.3) can be obtained from (5.46) 

and (5.40) which verifies the measurement update of the 

estimate. 
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Comment 6; A useful relationship that essentially is a re

sult for J ^(n) is 

[I+F(n)B(n-l)Q{n-l)B' (n-1) ]d(n|n-l)=(|) ̂ (n-l)d(n-l|n-l) 

(5.47) 

Observation of (5.4) and (5.8) indicates this equation can 

be obtained if 

j"^(n) = I+F(n)B(n-l)Q(n-l)B'(n-1) (5.48) 

or if 

1= [I+F(n)B(n-l)Q(n-l)B'(n-l)]J(n) (5.49) 

Substituting for J(n), the product is 

[I+F(n)B(n-l)Q(n-l)B' (n-1) ] {I-F(n)B(n-l) [Q"^(n-1) 

+ B'(n-l)F(n)B(n-l)]"^B'(n-1)} 

= I+F(n)B(n-l)Q(n-l)B'(n-1) 

- F(n)B(n-l)[Q'^(n-1)+B'(n-l)F(n)B(n-1)]"^B*(n-1) 

- F(n)B(n-l)Q(n-l)B' (n-l)F(n)B(n-l) [q"^ (n-1) 

+ B'{n-l)F(n)B(n-l) ]"^B'(n-1) (5.50) 
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= I+F(n)B(n-l){Q(n-l) 

- [Q~^(n-1)+B'(n-.l)F(n)B(n-l)]"^ 

- Q(n-1)B'(n-l)F(n)B(n-l)[Q"^(n-1) 

+ B'(n-l)F(n)B(n-l)]"l}B'(n-l) (5.51) 

= I+F(n)B(n-l){Q(n-l) [Q"^(n-1)+B'(n-l)F(n)B(n-l) J 

- Q(n-1)B' (n-l)F(n)B(n-l)-I} [Q"^(n-1) 

+ B'(n-l)F(n)B(n-l)]"^B'(n-1) (5.52) 

= I+F(n)B(n-l){I+Q(n-l)B'(n-l)F(n)B(n-l) 

- Q(n-1)B' (n-l)F(n)B(n-l)-I}[Q"^(n-l) 

+ B'(n-l)F(n)B(n-l)l"^B'(n-1) (5.53) 

= I (5.54) 

which is the condition indicated in (5.49). 

Two relationships that are convenient to use in 

obtaining the delayed state information filter follow. 

Comment 7 ; 

P(n|n-l)C'(n) = P (n jn-l)M'(n)+(}) (n-DP (n-1 jn-DNMn) 

(5.55) 
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This can be obtained easily starting with (5.5) and using 

(5.10). 

P(n|n-l)C'(n) = P(n|n-l)M'(n) 

+ P(n|n-1) J(n)4)"^(n-1)N'(n) (5.56) 

= P(n|n-l)M'(n) 

+ P(n|n-l)J(n)4"^\n-l)P"l(n-l|n-l)*"l(n-l) 

4(n-l)P(n-l|n-l)N'(n) (5.57) 

= P(n|n-l)M*(n) 

+ p(n|n-l)J(n)F(n)*(n-l)P(n-l|n-l)N'(n) (5.58) 

= P(n|n-l)M'(n)+4(n-l)P(n-l|n-l)N'(n) (5.59) 

which is Equation (5.55). 

Comment 8 ; 

4"l(n-l)H(n-l)J(n)*"T(n-l) = P(n-l|n-l) 

- P (n-l I n-1) (|) ' (n-1) P ^ (n | n-1) (j) (n-1) P (n-1 j n-1) 

(5.60) 

To obtain this result, first note that 

J(n) = I-p"l(n|n-l)H(n-l) (5.61) 

since from Equation (5.10) 
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J ^(n) = F(n)P{njn-l) (5.62) 

and using (5.9) and (2.18) 

F(n)P(nIn-1)[I-P"^(n|n-l)H(n-1)] 

= F(n) [P{n|n-1)-H(n-1)] (5.63) 

= I (5.64) 

Now premultiply (5.61) by $ ^ (n-1)H(n-1) and postmultiply 

—T 
by (|) (n-1). The result, without time notation, is 

= (()~^H(|)~^-(ti~^HP~^(n|n-l)H({)"'^ (5.65) 

= *"^{H-HP"l(n|n-l)H}*"^ (5.66) 

= (|) ^{P (n I n-1)-H-[I-HP ^ (n|n-l) ]P(n[n-l) 

+ [I-HP"l(n|n-l)]H}4"T (5.67) 

= *"^{P(n|n-l)-H-[P(n|n-l)-H]P"l(n|n-l). 

[P(n|n-1)-H]}*"T (5.68) 

Using Equation (2.18) 

= <j) ^i$P(n-l|n-l)0' 

- YP(n-l}n-l)4'P"l(n|n-l)*r(n-l}n-l)*'}*"T (5.69) 

= P(n-l|n-l)-P(n-l|n-l)4'P"l(n|n-l)*P(n-l|n-l). (5.70) 

which is the relationship stated as Comment 8. 
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CHAPTER VI. ARITHMETIC REQUIREMENTS 

The computer requirements are an important factor in 

deciding which of the algorithms to use for a given job. 

One facet of this data processing problem for the delayed 

state filter was analyzed in this study. 

Tables are presented in this chapter that summarize the 

arithmetic requirements of the algorithms previously presented 

and provide a means of comparison. A complete comparison for 

a specific job would include other variables which cannot be 

considered in general such as machine logic time (15), avail

able storage (16) and numerical stability. Another factor 

to be considered is that the specific order in which the mat

rix multiplications are made to minimize the arithmetic re

quirements depends on the state dimension n, input dimension 

r and measurement dimension m. The tables assume n greater 

than r and much greater than m. Also, in many problems meas

urements are not available at all times which would require 

more consideration of the time update portions [&(n|n-l) and 

P(n|n-1)] of the algorithms. 

The results given for the computations consider symmetry 

when it exists in that only triangular portions of those 

matrices are computed. Sparseness is not considered however 

since that is dependent on the specifics of a given problem. 

The arithmetic requirements listed for matrix inverse 
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operations and for solutions of linear algebraic systems 

assume the use of the Cholesky technique for symmetric 

matrices (17). According to Fox (18) this technique has 

significant numerical advantages over other common methods. 

To solve linear algebraic systems of the form 

b = Ax (6.1) 

using the Cholesky method, first solve for the upper tri

angular matrix R defined such that 

A = R'R . (6.2) 

Then solve for y where 

b = R'y (6.3) 

and then obtain x from 

y = Rx (6.4) 

For Cholesky inversion of A, obtain upper triangular R 

as before such that 

R'R = A (6.5) 

""1 Then solve for A from 

RA"^ = (R')"l (6.6) 

In all of the tables Q and R were assumed to be diagonal, 
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This is nearly always the case for R and can be achieved for 

Q if necessary by redefining the input matrix B(n). For 

example for 

B(n) = 

*11 u(n) = [ ] 
*21 

^11 ^12 

^21 ^22 

^31 ^32 

(6.7) 

( 6 . 8 )  

with 

cov(u) = 

qi2 * 0 

^11 ^12 

^21 ^22 
(6.9) 

(6.10) 

define a new input matrix B(n) and a new driving function 

u(n) as 

B(n) = 

11 

21 

'31 

"ll + "12) 

% "21 + "22' 

^31 ^32^ 

(6.11) 
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u{n) (6.12) 

u 
21 

It is easily seen that 

B{n)u(n) = B(n)u(n) (6.13) 

and 2 

0 

GOV(u) (6.14) 

0 ^22 

It also should be pointed out that for complete arith

metic analysis of the information algorithm it is necessary 

to know the portion of times for which the state estimate 

is required. More computations are necessary if & is re

quired at all times or if the error covariance is desired. 

The tables give the number of multiplications plus 

divisions, the number of additions plus subtractions and the 

number of square roots required for each individual operation 

of each algorithm. Totals are given separately for time and 

measurement update portions of the algorithms. 

As an example of the use of the tables, the arithmetic 

requirements of the nav-sat problem studied by Winger (19) 

were determined and the results listed in Table 6. The 
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Table 1. Conventional covariance filter 

Operation x, 4-

($)(P) 

(4P) ((|)' ) + |n^ 

(B) (Q) nr 

(BQ)(B') |n^r + inr 

(*P*')+(BQB') 

( < t > )  ( i t )  n ^  

Time update ^n^ + + ^nr + jn^r 

(P)(M') n^m 

(M) (PM' ) ^nm^ + |nm 

(P) (N' ) n^m 

n3-n2 

|n^r + |-nr - jn^ - |n 

|n2 + |n 

2 
n -n 

|n^ - |n + jn^r + |nr 

2 
n m-nm 

12 1 12 
gnm + inm - ̂  

2^ 

2 
n m-nm 
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Table 1 (Continued) 

Operation x, 4-

(N)(PN') 

(()>) (PN' ) 

(M) (*PN') 

( ) + ( ) + ( ) + ( ) 

(PM')+(*PN') 

(S)-1 

[PM"+)(S"l) 

[PM'+](K*) 

(P)-( ) 

12 1 •^nm + ^nm 

n^m 

niti^ 

1 3  2  1  
^ + m - ̂  

2 
nm 

12 1 ^n m + ^nm 

+ /- r  

12 1 12 1 
gnm + Jnm - - |m 

2 
n m-nm 

2 2 nm -m 

2 
3m +m 

nm 

m 

2 
nm -nm 

12 1 12 1 ^n m + ^nm — ^n — ^n 
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Table 1 (Continued) 

Operation x, 4- +,-

(M) (x) run nm-m 

(N) (&) nm nm-m 

(y)-( )-( ) 2m 

(K) (y-) nm nm-n 

(&) + ( ) n 

^update"^*^ + 3nm^ + |-nm ^n^m + 3nm^ + |fun m 

+ + m^ - im + » 
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Table 2.. Sequential measurement processing (scalar case) 

Operation x, 4- +, - ^ 

PM' n^ n^-n 

M(PM') n n-1 

FN' n^ n^-n 

N(PN') n n-1 

P'N' n" n^-n 

M(P'N') n n-1 

5 4 

K n n 

P(n|n) + |n + |n 

PM' r? n^-n 

W n n 

P(n-l,n|n) r?" r? 

P(n-l|n) + ̂ n 

Mx n n-1 

n n-1 

6 n n+2 
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Table 2 [Continued) 

Operation x, -î- +, -

3^ n n 

Measurement 
update 6n^ + lOn 6n^ + 6n — 1 0 
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Table 3. General covariance computation (Form I) 

Operation X ,  —  + / - r 

2 n m 

n 

(M) (4)) N^M 

(M $) + (N) 

(K) (M4,+:9) 

(*)-( ) ( ) 

[*-( )( )]P 

{  } [  1 '  

(K) (R) 

(KR)(K') 

(K) (M) 

I- (KM) 

(I-KM) (B) 

(I-KM) (B) (Q) 

[I-KM] [:(I-KM) (B) ]' JXI^R + ^NR 

|„3 + 

nm 

^n?jn + 

n^m 

2 
n r 

rnm 

nr 

Total |n^ + 

n m - nm 

nm 

2 2 
n m-n 

n 

3 2 
n -n 

" h 
12 1 12 1 ^n m + ^nm — ^n — ^n 

2 2 
n m-n 

n 

2 n r-nr 

12 1 12 1 ^ r + ^ ^ 

|n^ - 3n^ - + |^n^m 

3 3 2 3 
+ jnm + r + 

1 3 2 1 
+ gUm + ̂ n r — ^nr 
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Table 4. General covariance computation (Form II) 

Operation X ,  —  + / - r 

[PM'+({)PM' ] (K* ) 

(K) (S) 

12 1 ^n m + ^nm 

nm 

12 1 12 1 
*2 n m + ^nm — ^n — ^n 

2 nm -nm 

(KS) (K* ) 2 
n m 2 2 

n m - n 

|n2 + |n 

Total 
3 2 2 1 
^n m + nm + ^nm 3 2 2 1 ^n m + nm - ̂ nm + n 0 
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Table 5. Information filter 

Operation x, 4-

1.3 

2 
FB n r 

(B')(FB) ^nr^ + ^nr 2  T  
,-l 

Q"^+B'FB 

[Q~^+B'FB)~^ JR^ + " JR 

(FB)(Q"^+B'FB)NR^ 

[FB( )~^](FB)' |N^R + |NR 

F-[ ](FB)' 

<J)~^d n^ 

(B') (<J>~"d) nr 

[FB( ) --] [B*({)"^d] nr 

+ / - r-

3 2 
n-n 

1„3 1 
2"^ " 2" 

2 n r-nr 

12 1 
gnr + gnr - |r 

m 
00 

2 
nr -nr 

iji^r + |nr - in^ - |n 

+ |n 

2 n -n 

nr-r 

nr-n 
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Table 5 (Continued) 

Operation 

time update 

-T (p N' 

(B') 

(0 FB)~^ (Bf mr 

3 2 2 2 
2 n +n +n r+nr 

2 U2nr+jr+|^r^+ji 

n^m 

nmr 

2 

[B][( ) ^( )] nmr 

[F][B( )"!( )] n^m 

C 

[N<p~^][B( )"!( )] nm^ 

+ m^ - |m 

C'V"1 nm^ 

(C'V"^) :C) ^n^m + ̂ nm 

p-1 

B'd nr 

(Q)(B'd) r 

+ f -

, 3n^-5n+3n^r+2nr 

2^+3nr^+r^-2r^-r ^ 

2 
n m-nm 

nmr-mr 

mr^ - mr 

nmr - nm 

2 
n m - nm S 

2nm 

2 2 
nm - m 

13 12 ^ + m - m 

2 
nm - nm 

12 1 12 1 
^n m + ^nm - ^n - ^n 

|n2 + in 

nr-r 



www.manaraa.com

Table 5 (Continued) 

Operation + , - r 
[N(j)"^B] [QB'd] mr 

(C'V (y-) nm 

mr - m 

nm - n + m 

n 

measurement 
update 5 2 2 2 3 

m+2nmr-mr +2nm +^nm 

1 3  2  1  +nr+r+mr+^ +m 

5 2 1 
^n m-^nm+2nmr-mr 

2 2 13 12 
+mr -m +m^^m 

m 

solve for x(n|n) 

d(n|n) 

=P ^(n|n)x(n|n) ^n^ + ̂ n^ + ^n 

+ 2nm +nr-r 

K + - I" n 
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parameters for this problem are n=16, r=9 and m=2. 

With respect to this specific problem only, it can be 

seen that the penalty for sequential processing is reasonably 

small considering the advantage of determining the effects 

of each measurement component separately. Also it can be 

seen that there is a substantial penalty for using Form I of 

the general covariance calculation. The information filter 

does not appear attractive but could be used if starting 

problems exist. After the effect of the initial conditions 

has diminished, the problem could be converted to one of the 

covariance forms by inverting the inverse error covariance 

matrix. 

Table 6. Arithmetic requirements of nav-sat problem 

Filter Update x,^ + ,- /-

covariance time 7896 7 3 4 4  0  
simultaneous measurement 2135 2038 2 

covariance time 7896 7344 0 
sequential measurement 2713 2600 0 

covariance time 7896 7344 0 
general (Form I) measurement 13647 12326 2 

covariance time 7896 7344 0 
general (Form II) measurement 2711 2598 2 

information time 12810 11927 9 
information measurement 3444 3167 18 



www.manaraa.com

72 

CHAPTER VII. SUMMARY 

Algorithms are presented which give optimal estimates of 

the state of a discrete-time system for the case in which the 

measurements are a linear function of both the state at the 

time of the measurement and of the state at the preceding 

instance of time. These new algorithms are applicable to a 

larger class of conditions or provide estimates in a more 

desirable manner than those previously existing. 

The sequential measurement processing algorithm allows 

components of a vector measurement to be processed individual 

ly so the effects of each may be examined independently. 

Previous results were limited to simultaneous processing of 

all components of the measurement. This technique also has 

significant computational advantages since matrix inverse 

operations are performed on smaller matrices or on scalars. 

The general covariance algorithm provides a means of 

determining the correct error covariance resulting from the 

use of any arbitrary gain matrix, thus admitting the possi

bility of suboptimal techniques designed to reduce computa

tional effort. Results obtained by previous authors were 

limited to the case of optimal gains. Two forms of the 

result are given with first being more numerically stable 

than either the second or the previous algorithm if uâêd wlLu 

optimal gains. The second form generally requires fewer 
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arithmetic operations than the first but more than the 

previous algorithm if used with optimal gains. Both forms 

are shown to be stabilized against small errors in gain 

calculation when used with optimal gains. 

An information algorithm for the delayed state filtering 

problem also is developed. This algorithm is advantageous 

when very pessimistic values are assigned for initial error 

covariance, since the usual covariance algorithm has starting 

problems for this circumstance. This new algorithm is 

equivalent to, but not algebraically identical with, the 

conventional algorithm thus allowing the possibility of 

superior numerical performance. 

A comparison of the arithmetic computational require

ments of all the new algorithms as well as the conventional 

algorithm is presented so one of the major factors in selecting 

an algorithm for a particular application easily can be deter

mined. 
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